
International Electronic Scientific Journal “Science Online” http://nauka-online.com/

International Electronic Scientific Journal “Science Online” http://nauka-online.com/

Technical sciences

UDC 336.72

Kolesnyk Valeriia

Student of the

Kharkiv National University of Radioelectronics

MPI AS A WAY OF MESSAGING

Summary. The theoretical aspects and characteristics of the message

transfer interface MPI were investigated.

Key words: MPI, parallel programming, message passing.

The parallel programming is widely used in today’s development process.

To produce parallel computing the multiple resources are used to solve the

problem. The computations are executed simultaneously using such multiple

resources as, for example, processors. To make understandable the messages of

different resources some specifications for passing messages need to be used. One

of such specifications is Message Passing Interface (MPI).

MPI is a message transfer interface between processes performing a single

task. It is primarily intended for Massive Parallel Processor (MPP) as opposed to,

for example, OpenMP. A distributed (cluster) system is typically a set of

computational nodes connected by high-performance communication channels

(such as InfiniBand).

MPI is the most common standard of the data transfer interface in parallel

programming. MPI is standardized by the MPI Forum. MPI implementations

exist for most modern platforms, operating systems, and languages. MPI is

widely used in computational physics, pharmacy, materials science, genetics and

other fields of knowledge.

http://nauka-online.com/
http://nauka-online.com/

International Electronic Scientific Journal “Science Online” http://nauka-online.com/

International Electronic Scientific Journal “Science Online” http://nauka-online.com/

A parallel program from the MPI point of view is a set of processes

running on different computing nodes. Each process is generated on the basis of

the same code. The main operation in MPI is message transmission. The MPI

implements practically all the basic communication patterns: point-to-point

(point-to-point), collective (collective) and one-sided (one-sided) [1]. Scalability

is the main goal of parallel processing. MPI allows to support scalability.

The main advantages of establishing a message-passing standard are

portability and ease of use. In a distributed memory communication environment

in which the higher level routines and/or abstractions are built upon lower level

message-passing routines the benefits of standardization are particularly apparent.

Furthermore, the definition of a messagepassing standard, such as that proposed

here, provides vendors with a clearly defined base set of routines that they can

implement efficiently, or in some cases for which they can provide hardware

support, thereby enhancing scalability. The goal of the Message-Passing Interface

simply stated is to develop a widely used standard for writing message-passing

programs. As such the interface should establish a practical, portable, efficient,

and flexible standard for message passing. MPI does not define a runtime model

for each process. The process may be sequential or consist of sub-processes that

can be performed simultaneously. In this case, MPI blockers only block the

preprocessor to which the call is directed. MPI does not provide mechanisms for

determining the initial distribution of processes on physical processors. This is

done by the system on which the MPI is implemented. Also the MPI-1 standard

does not provide the dynamic generation and removal of processes [2].

The effectiveness of MPI is also achieved by not doing the unnecessary

task of forwarding large amounts of excess information with each message or

encoding-decoding message headers. MPI was designed to support simultaneous

execution of computation and communication to use coprocessors. This is

achieved by using unblockable communication challenges that share the initiation

and completion of communication. To increase speed, MPI uses techniques that

http://nauka-online.com/
http://nauka-online.com/

International Electronic Scientific Journal “Science Online” http://nauka-online.com/

International Electronic Scientific Journal “Science Online” http://nauka-online.com/

application programmers often do not think about. For example, built-in buffering

avoids delays in sending data - the control to the transmitting branch is returned

immediately, even if the receiving branch is not ready to receive. MPI uses

multithreading (multithreading), taking most of its work to low-priority

threads(threads). Buffering and multithreading minimize the negative impact of

unavoidable delays in sending on the application’s performance [3]. The "one-all"

data transmission takes time proportional to the number of branches involved, but

to the logarithm of that number.

To describe the MPI program it is necessary to consider the basic terms

used in MPI programming. MPI is a set of processes that can send messages to

each other via different MPI functions. Each process has a special identifier - rank

(rank). Process rank can be used in different MPI message sending operations, for

example, rank can be specified as message recipient ID. The value of the process

identifier is based on orders. Each process is assigned an order from each medium

to which it relates. The value of an order is some integer assigned to it, starting

from scratch and indicating all individual processes in the context of a certain

communication medium (communicator). Common practice is to define the

process whose global order is 0 as the host process. Through the value of order

(rank), the developer can determine who the sender is and who the recipients are

instead. In addition, there are special objects called communicators

(communicators) in MPI that describe groups of processes. Each process within a

single communicator has a unique rank [4]. The same process may apply to

different communicators and may therefore have different ranks within different

communicators. Each data transfer to MPI must be performed within a

communicator. A more efficient implementation is achieved by taking advantage

of associativity and using a logarithmic tree reduction.

It is well-known fact, that the necessity to forward data may not be adjacent

and may consist of different types of values. Of course, and such fragmented data

can be transmitted using multiple messages, but the solution method will not be

http://nauka-online.com/
http://nauka-online.com/

International Electronic Scientific Journal “Science Online” http://nauka-online.com/

International Electronic Scientific Journal “Science Online” http://nauka-online.com/

effective because of the latency of the set of implementations data transfer

operations. Another possible approach may be pre-packaging data transmitted to a

continuous vector format, but there are also redundancies of data copying

operations, and the comprehensibility of such transmission operations, will be far

from desirable. To improve the ability to determine the composition of messages

in MPI a mechanism of derived data types.

MPI provides to programmers a single mechanism for the interaction of

branches within the parallel application independently of the machine architecture

(single processor / multiprocessor with shared/separate memory), mutual branch

arrangement (on one processor / on different) and the API of the operating

system. (API = "applications programmers interface" = "application developer

interface"). The program using MPI is more easily debugged (it narrows down the

amount of space available to make stereotypical errors in parallel programming)

and is transferred more quickly to other platforms (ideally, simple recompilation).

Among the advantages of MPI could be highlighted the following thing

below:

1. MPI is originally a FAST tool. It uses techniques that application

programmers often do not think about. For example: built-in buffering avoids

delays in sending data - the control to the transmitting branch is returned

immediately, even if the receiving branch is not ready to receive.

2. Using multithreading (multithreading), taking most of its work to

low-priority threads (threads). Buffering and multithreading minimize the

negative impact of unavoidable delays in sending on the performance of the

application.

3. "One-all" data transmission time proportional to, and logarithm of,

the number of branches involved.

The attractiveness of the message-passing paradigm at least partially stems

from its wide portability. Programs expressed this way may run on distributed-

memory multiprocessors, networks of workstations, and combinations of all of

http://nauka-online.com/
http://nauka-online.com/

International Electronic Scientific Journal “Science Online” http://nauka-online.com/

International Electronic Scientific Journal “Science Online” http://nauka-online.com/

these. In addition, shared-memory implementations, including those for multi-

core processors and hybrid architectures, are possible. The paradigm will not be

made obsolete by architectures combining the sharedand distributed-memory

views, or by increases in network speeds. It thus should be both possible and

useful to implement this standard on a great variety of machines, including those

“machines” consisting of collections of other machines, parallel or not, connected

by a communication network. The interface is suitable for use by fully general

MIMD programs, as well as those written in the more restricted style of SPMD.

MPI provides many features intended to improve performance on scalable

parallel computers with specialized interprocessor communication hardware.

Thus, we expect that native, high-performance implementations of MPI will be

provided on such machines. At the same time, implementations of MPI on top of

standard Unix interprocessor communication protocols will provide portability to

workstation clusters and heterogenous networks of workstations [5].

However, MPI developers have been severely criticized for being too

cumbersome and complex for an application programmer. The interface was also

difficult to implement. As a result, there are currently almost no MPI

implementations that fully integrate exchange and computation.

References

1. William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: Portable

Parallel Programming with the Message-Passing Interface. 328 с.

2. MPI: A Message-Passing Interface Standard Version 3.0 URL:

https://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf (дата

звернення: 29.09.2020).

3. Міллер, Р. Послідовні і паралельні алгоритми: Загальний підхід / Р.

Міллер, Л. Боксер; пер. з англ. М.: БИНОМ. Лабораторія знань, 2006.

406 с.

http://nauka-online.com/
http://nauka-online.com/
https://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf

International Electronic Scientific Journal “Science Online” http://nauka-online.com/

International Electronic Scientific Journal “Science Online” http://nauka-online.com/

4. Воеводін В. В. Технологии параллельного программирования. Message

Passing Interface (MPI). URL:

https://scinse.donntu.edu.ua/sp/sukhomlinov/library/7.pdf (дата звернення:

29.09.2020).

5. MPMD Launch Mode URL:

https://software.intel.com/content/www/us/en/develop/documentation/mpi-

developer-guide-linux/top/running-applications/mpmd-launch-mode.html

(дата звернення: 29.09.2020).

http://nauka-online.com/
http://nauka-online.com/
https://scinse.donntu.edu.ua/sp/sukhomlinov/library/7.pdf
https://software.intel.com/content/www/us/en/develop/documentation/mpi-developer-guide-linux/top/running-applications/mpmd-launch-mode.html
https://software.intel.com/content/www/us/en/develop/documentation/mpi-developer-guide-linux/top/running-applications/mpmd-launch-mode.html
https://software.intel.com/content/www/us/en/develop/documentation/mpi-developer-guide-linux/top/running-applications/mpmd-launch-mode.html

